
Directed percolation: series expansion for some three-dimensional lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 3553

(http://iopscience.iop.org/0305-4470/16/15/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 3553-3560. Printed in Great Britain 
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Abstract. Low density series expansions have been obtained for the directed cubic lattice 
bond problem and the directed cubic and body centred cubic lattice site problems. 
Estimates of the critical probabilities and critical exponents 7, yo, ~ 1 1 ,  vI for these problems 
are obtained. The exponent values are found to be consistent with the universality of 
directed percolation and Reggeon field theory and the hyperscaling relation = 
(Dv,+vII-Y)/2. 

1. Introduction 

Recently there has been considerable interest in the directed percolation problem 
which was first formulated by Broadbent and Hammersley (1957) in terms of fluid 
flowing through a random medium. In this paper we consider models in which there 
is some (Cartesian) axis such that the fluid flow always has a positive component along 
this axis (the ‘preferred’ axis or direction). Models with this property are in a different 
universality class from isotropic percolation (Blease 1977a,b,c, Obukhov 1980); 
however, Cardy and Sugar (1980) showed them to be in the same universality class 
as Reggeon field theory. These models have two connectedness lengths 511 and C1 
(Kinzel and Yeomans 1981), and based on the equivalence with Reggeon field theory 
Cardy and Sugar (1980) proposed a scaling form for the pair connectedness of a site 
at r relative to the origin which may be written 

(1.1) 

where S is the mean cluster size, t is the component of r parallel to the preferred 
axis and x is the D-dimensional component perpendicular to the preferred axis. 

In the random media considered here the fluid flows along the nearest-neighbour 
bonds of an infinite regular lattice. The passage of the fluid is interrupted by randomly 
placed dams on the bonds (or sites). If p is the probability that a bond (or site) is not 
dammed, the percolation probability P( p )  is the probability that the region wetted 
by fluid introduced at the orgin is unbounded. The critical probability p c  is defined 
by p c  = sup{p : P ( p )  = 0) and it will be assumed that near p c  

C(X,  t )  = s5;D5i’ @(x/51, t/5ll) 

m) = (P - P X  p 4, 
S=Ipc-pl-y, 51.11- IPC-PI-”’.~~, P + P C .  

0 1983 The Institute of Physics 3553 



3554 K De’Bell and J W Essam 

The equivalence with Reggeon field theory leads to the hyperscaling relation (Cardy 
and Sugar 1980) 

(1.2) 

The mean number of sites on the preferred axis reached by fluid flowing from the 
origin So is also singular at pc with critical exponent yo .  Integration of C(0, t )  together 
with the scaling form (1.1) leads to the scaling relation (De’Bell and Essam 1983a, 
hereafter referred to as I) 

P = ( D Y i  + vll- Y )/2. 

In I estimates of the exponents for the two-dimensional problems considered were 
found to be in excellent agreement with the scaling relation (1.2)- However, difficulties 
arising (presumably) from insufficient length of series led to some ambiguity with 
respect to (1.3). In this paper the low density series for three-dimensional systems 
are analysed and the critical exponents serve to confirm the common universality class 
of directed percolation and Reggeon field theory and Frovide a test of the above 
scaling relations. The results are summarised in table 2. 

2. Series expansions and analysis 

The simple cubic (sc) and body centred cubic (BCC) lattices are considered and half 
the number of bonds at each site are directed outwards so as to form the edges of a 
pyramid with axis in the preferred direction. Low density expansions for S ,  So ,  and 
the second moments 

F~~ = 1 x2C(r )  and ~2~ = 1 t2C(r)  
r r 

are obtained. The results for the bond problem on the sc lattice and the site problem 
on the sc and BCC lattices are tabulated in appendix 1. The first eight terms of the 
mean size series for the sc lattice bond problem have already been given by Blease 
(1977a). 

The sc lattice bond problem series were obtained by using the ‘transfer matrix’ 
method of Blease ( 1 9 7 7 ~ )  to generate the pair connectedness for sites at most six 
steps from the origin. This gives the series complete as far as p6,  and the partial 
contributions to the higher powers were completed up to p 1 3  using the weak subgraph 
expansion (Dunn et al 1975, Blease 1977b). This composite method has been fully 
described in I (0 4) and the lattice constants used are given in appendix 2. S o @ )  is 
the sum of the pair-connectedness over points on the preferred axis (x = 0). Neverthe- 
less the calculation of contributions to S o ( p )  from graphs with both parallel and 
non-parallel parts required p , ( x ) ,  the number of n-step random walks from 0 to x on 
the D-dimensional projection of the lattice perpendicular to the t axis. This projection 
is the cyclic directed triangular lattice (Blease 1977a, figure l(d)),  and if n l ,  n 2  and 
n3 are the numbers of steps taken parallel to the three bond directions in arriving at 
x, then 

p , ( x )  = n ! / n  I !  n 2 !  n3! or 0 (2.1) 
depending on whether or not x is reachable in  exactly n steps. This condition may 
be stated in terms of the number of steps N in the shortest path to x as: x is reachable 
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if n L N and n = N mod 3. The occurrence of these zeros is relevant to our subsequent 
analysis of the So series. 

For the site problem we have used the perimeter method (Domb 1959) together 
with an animal counting program to generate the series. For the sc lattice we have 
verified the data by the same method used for the bond problem. This provides an 
excellent check on the validity of both methods. 

The series were analysed by forming the usual Dlog Pad6 approximants. The 
results for the mean size series are shown in table 1, and first estimates of pc based 
on the apparent convergence of the higher-order approximants are summarised in 
table 2. The result for the sc bond problem represents a refinement of the value 
pc=0.383k0.003 given by Blease (1977a). Table 2 also contains estimates of the 
exponents y, V I I ,  v l  and vo = (y - yo)/D which were obtained from standard pole- 
residue plots of the Dlog approximants to s, F ~ J S ,  pzx /S  and S / S o  respectively. 
Sample plots are shown in figures 1 and 2. The plots show the usual correlation 
between residue and pole position, and the estimates in table 2 represent a linear 
approximation to these data near the central estimates of pc. 

3. Comparison with universality and scaling predictions 

When the uncertainty in the critical points is taken into account, the data of table 2 
are consistent with all three percolation models being in the same universality class. 
The most consistent estimates of pc are for the sc bond problem, and the exponent 
estimates for the sc site problem are uniformly lower than those for the other two 
problems which are in good agreement with one another. Also from table l ( b )  it can 
be seen that all the approximants obtained from the last three terms of the series are 
either defective or have interfering non-physical poles. Experience with similar series 
shows that this normally heralds a change in the estimated critical point. In obtaining 
our final estimates we therefore adjust the critical probability of the sc site problem 
upwards to 0.434. This value is quite consistent with the pole-residue plots for the 
other exponents. The slowness of convergence may be caused by an apparent non- 
physical singularity at p = -0.32 with index of divergence 0.22. Our final estimates 
of the critical probabilities and the universal exponent values are 

pc(sc bond) = 0.382* 0.001, pc(sc site) = 0.434 * 0.004, 

P,(BCC site) = 0.344i 0.004, 

y = 1.57zt0.04, V I I =  1.28*0.03, v I  = 0.73 k0.02. 
In table 2 we also quote the values of vll and v I  obtained by Brower et a1 (1978) 

for a lattice model in the same universality class as Reggeon field theory. The excellent 
agreement with our final values for these exponents confirms the common universality 
class of the two models (Cardy and Sugar 1980). 

The data in  table 2 may be used to compute the right-hand side of the scaling 
relation (1.2), and taking into account the systematic variation of exponent with critical 
point we obtain the overall estimate 

Previous direct estimates of the left-hand side are 0 = 0.60 f 0.05 for the bond problem 
(Blease 1977a) and the overall estimate =0.59*0.02 for bond and site problems 
(De’Bell and Essam 1983b) in good agreement with (1.2). 

( D v ~  + V I I  - y) /2  = 0.59 f 0.02. 
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Table 1. Poles and residues of the Dlog Pade approximants to the mean size. 

( a )  Simple cubic bond problem 

NJN-2 NIN - 1 NIN NJN + 1 NJN+2 
N P c  Y P c  Y P C  Y P C  Y Pc Y 

3 0.3485 2.920 0.3735 1.381 0.3853 1.672 0.3837 1.619 0.3823 1.577 
4 0.3789 1.482 0.3808 1.530 0.3823 1.575 0.3822 1.573 0.38231 1.5771 
5 -  - 0.3822 1.573 0.3823t 1.5751 0.3808 1.511 0.3818 1.559 
6 0.3814 1.543 0.3818 1.556 0.3818 1.558 
7 0.3818 1.558 

( 6 )  Simple cubic site problem 
3 0.4839 5.098 0.4322 1.501 0.4305 1.472 0.4316 1.494 0.4318; 1.499t 
4 0.4307 1.476 0.4312 1.486 0.4293t 1.4541 0.4142$ 1.504$ 0.43281 1.5161 
5 0.43021 1.4681 0.6722$ 0.8384t 0.42991 1.462; 
6 0.43081 1.477: 

( c )  Body centred cubic site problem 
3 0.3511 4.847 0.3257 1.217 0.33371 1.3591 0.3427 1.540 0.3462 1.639 
4 0.3366 1.422 - - 0.3449 1.593 
5 0.3483 1.702 

1 Defective approximant. $ Interfering non-physical pole. -No real positive pole. 

Table 2. Summary of critical probabilities and exponents. 

P c  Y 4 U, Yfl 

sc bond 
problem 
sc site 
problem 
BCC site 
problem 
BCC bond 
problems 
Overall exponent 
estimates 
Reggeon theory$ 

0.382*0.001 1.565*0.003 1.279*0.003 
+ 37Ap, + 25Ap, 

0.4315 1.494*0.001 1.245*0.010 
0.0015t + 22Ap, + 15Ap, 
0.344* 0.004 1.570*0.004 1.279*0.002 

0.288 f 0.004 1.59* 0.002 
+ 28Ap, +32.5ApC 

+ 36Ap, 
1.57zk0.04 1.28i0.03 

1.271*0.007 

0.719*0.003 0.625*0.005 
+ 14Ap, +llAp, 

0.695 * 0.001 0.605 i 0.003 
+ 25Ap, + 20Ap, 

0.745 * 0.005 0.640* 0.003 
+ lOAp, + 14Ap, 

0.73*0.02 0.63*0.02 

0.737*0.012 

+ I f  the central estimate of pc is adjusted to 0.434 (see text) the central exponent estimates would be 

$ Brower et a /  (1978). 
9: From the series of Blease (1977a). 
Apc represents the deviation from the central estimate of pc.  

y=1.54, ~ = 1 . 2 8 ,  ~ , = 0 . 7 2 ,  V0=0.62. 
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Figure 1. Pole-residue plot of the Dlog S / S ,  (0) and / L ~ ~ / S  (0) series for the body 
centred cubic site problem. 

P C  

Figure 2. Pole-residue plot of the Dlog p2JS series for the body centred cubic site problem. 

If the scaling relation ( 1 . 3 )  is valid the value of v o  in table 2 should be equal to 
vL. Our results clearly cannot be said to confirm this relation. In fact, for all three 
problems considered, the pole-residue plots based on S/So and p2JS form two distinct 
curves which do not intersect in the vicinity of the estimated p c  (see figure 1 for 
example). Thus agreement with scaling cannot be obtained by a small change in the 
estimates of p c .  A direct estimate of yo based on the Dlog approximants to So for 
the sc bond problem gives 0.298 + 5Apc* 0.005, and combining this with the y estimate 
gives vo = 0 . 6 3 4  + 16Apc* 0.005 which shows the internal consistency Pad6 
approximant technique. We believe that the source of the discrepancy lies in the 
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nature of the So series. The dominant contribution to the early terms comes from 
walks which terminate at a point on the f axis. On the sc lattice such walks must 
have a length which is divisible by three, and the terms of So therefore form three 
separate subsequences. This means that the number of available terms is effectively 
reduced by a factor of three. Similarly the required walks on the BCC lattice must be 
of even length with the consequent regular oscillation which may be seen in the data 
of appendix 1. The periodic structure of the series is reflected in the pole distribution 
of the Pad6 approximants. For the sc bond problem the Dlog approximants for both 
So and S / S o  have a dominant complex pole pair at -O.19*O0.3li, whereas the BCC 
approximants have a pole on the negative real axis which is closer to the origin than 
p c .  From this point of view many of the available terms are wasted in representing 
dominant non-physical singularities. The convergence to the required critical exponent 
will therefore be slow and a considerable extension of the series would probably be 
required to resolve this problem. 

4. Summary 

Low density series expansions for the sc bond and site problems and the BCC site 
problem have been obtained. The earlier estimate (Blease 1977a) of pE for the sc 
bond problem has been refined and first estimates of p c  for the site problems have 
been given. 

Our estimates for the critical exponents confirm the universality of directed percola- 
tion and Reggeon field theory and are in excellent agreement with the hyperscaling 
relation (1.2). The scaling relation (1.3) is not satisfied by the present estimates for 
d = 3. However, for reasons given above the number of presently available series 
coefficients may be insufficient to give reliable estimates of vo. 

Appendix 1. Coefficients of p m  for low density percolation series on some three- 
dimensional lattices 

( a )  Simple cubic bond problem 

m S SO 31~2, ~ C L L  

0 1 1 0 0 
1 3 0 3 6 
2 9 0 36 36 
3 27 6 243 162 
4 78 0 1284 642 
5 225 -6  5 913 2 358 
6 633 81 24 813 8 226 
7 1785 6 97 731 27 666 
8 4 944 - 168 366 003 90 324 
9 13 742 1388 1321 338 288 636 

10 37 686 - 180 4 619 748 904 506 
11 103 767 -4 746 15 770 943 2 795 238 
12 282 425 27 572 52 644 681 8 518 212 
13 772 719 - 624 172 831 605 25 708 278 
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( b )  Simple cubic site problem 

~~ 

m S S O  3 ~ ~ 2 ~  3 ~ 2 ~  

0 1 1 0 0 
1 3 0 3 6 
2 9 0 36 36 
3 24 6 23 1 156 
4 63 -6 1134 576 
5 159 -3 4 752 1 944 
6 402 96 18 054 6 156 
7 988 - 182 63 693 18 648 
8 2 454 18 213 738 54 660 
9 5 922 1713 686 052 155 970 

10 14 556 - 5  058 2 138 160 436 416 
11 34 641 3 108 6 460 848 1 197 954 

( c )  Body centred cubic site problem 

m S S" 3 ~ 2 ~  3 ~ ~ 2 ~  

0 1 1 0 0 
1 4 0 4 4 
2 16 4 64 32 
3 54 -6  536 184 
4 180 40 3 392 880 
5 579 - 91 18 240 3 812 
6 1860 496 88 640 15 456 
7 5 778 - 1682 398 892 59 796 
8 18 230 7 670 1 705 472 223 328 
9 55 324 - 28 932 6 957 544 810 592 

Appendix 2. Directed lattice constant data for the simple cubic lattice 

Here we record the data used in  obtaining the bond problem series on the sc lattice. 
It was also used to check all but the last term for the site problem. The two rooted 
graphs G which are labelled a to w are drawn in Blease (1977b) except for w which 
is drawn in I. The body of the table gives the number of ways the directed unlabelled 
graph may be embedded on the lattice with one root on the origin and the other on 
site r = (n l ,  nz,  n 3 ) .  It is convenient to define new coordinates which reflect the 
symmetry of the problem by 

v = n l + n ~ + n 3 ,  X = n l  - nz, Y =n2-n3,  

in terms of which 

t Z  = a 2 / 3  and Jx 1' = 2 ( X z  + X Y  + Y 2 ) / 3  

Only representative points with n l  3 n 2 z n 3  (or X ,  Y 2 0 )  are listed in the table and 
the contributions from each graph are summed over equivalent points. U and e are 
the numbers of vertices and edges in G respectively and W ( G )  is the total number 
of embeddings used in  calculating the mean size. 
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3x2/2 0 1 4 9 1 3 7 13 21 4 7 12 9 
G o  e U W ( G )  X , Y  0,O 1 , 0  2.0 3,O 0 , l .  1 , l  2 , l  3 , l  4 , l  0 , 2  1 , 2  2 , 2  0 , 3  

a 4 4 2  3 3 
b 6 6 3  15 9 6 
c 6 7 3  12 6 6 
d 7 8 4  9 6 3 
e 8 8 4  90 75 6 9 
f 7 8 3  12 12 
g 8 9 4 120 96 12 12 
h 10 10 5 594 147 405 6 36 
i 9 10 5 90 12 66 12 
j 7 9 3  6 6 
k 8 9 3  2 2 
1 8 10 4 24 18 6 
m 9 10 4 54 48 6 
n 9 10 4 72 72 
o 8 10 4 24 18 6 
p 9 10 4 84 78 6 
q 10 11 5 720 204 456 12 48 
r 12 12 6 4161 1176 243 2616 6 60 60 
s 10 12 6 27 6 18 3 
t 11 12 6 225 87 6 120 6 6  
U 11 12 6 540 150 12 348 12 18 
U 9 11 5 72 12 48 12 
w 10 11 5 300 78 198 6 18 
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